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Table 8. Mean inner potentials in V calculated using 
Doyle-Turner electron scattering factors, the 
Herman-Skillman Hartree-Slater program and the 

Grant et al. (1980) Dirac-Fock program 

Doyle-Turner Herman-Skillman Dirac-Fock 
Aluminium 17.10 15.59 17.04 
Silicon 14.02 13.42 13.84 
Copper 22.06 21.51 24.35 
Germanium 15.58 14.64 15.57 
Silver 24.44 23.24 24.36 
Gold 29.80 27.90 29.73 
SiO2 neutral 6.87 10.16 6.89 
MgO neutral 18.34 17.45 18.40 
MgO ions 11.48 12.64 
GaAs 15.19 14.41 15.40 

applied to other systems, such as intermetallics, and 
how the results would compare with measurements 
from energy-loss fine structure. 

Concluding remarks 

We have presented X-ray scattering-factor tables for 
a complete range of elements and ions calculated 
using a multiconfiguration Dirac-Fock computer 
code. The results are within less than 1% of the 
relativistic Hartree-Fock results of Doyle & Turner 
(1968). We have also given two parameterizations in 
terms of four Gaussians, one of higher accuracy over 
a range of about 2.0 A~-l and the other of lower 
accuracy over an extended range of 6.0 A~ -l  In 
general, we recommend direct use of the tables rather 
than use of the parameterizations. The electron scat- 
tering factors can be calculated from the X-ray scat- 
tering factors using the Mott formula. The limiting 
case offel(0) has been tabulated directly and can be 
used to calculate the mean inner potential. We show 
that the mean inner potential can be very sensitive to 
charge transfer and we give estimates for a number 
of compounds for which measurements are available. 

Information on how to obtain the complete tables 
is available from DR at the address given above. 

The multiconfiguration Dirac-Fock calculations 
that form the basis of this paper were performed 
on a VAX system at the Cavendish Laboratory, 
Cambridge. We acknowledge Professors A. Howie 
and L. M. Brown for providing access to these 
facilities and Dr A. Bleloch for his help. We also 
acknowledge useful discussions with Drs J. M. Zuo, 
J. C. H. Spence, M. A. O'Keefe and A. G. Fox. 
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Abstract 

This paper studies in detail 'tilted reflections', which 
are defined here as Bragg reflections where the inci- 
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dent vector k(£, the diffraction vector h and the 
normal n to the surface are not coplanar. Such 
reflections are especially useful when it is necessary 
to work in Bragg geometry with reflecting planes 
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making an angle • with the crystal surface that is 
larger than the Bragg angle. It is shown that the 
usual expressions of X-ray dynamical theory can still 
be applied if the vector n normal to the crystal 
surface is replaced by its projection n' on the diffrac- 
tion plane (h,k(f)) (except naturally when n' is a null 
or nearly null vector). By rotation of the crystal 
surface around the diffraction vector, one can then 
go from transmission cases to reflection ones with 
various asymmetry factors. Tilted reflections are used 
in X-ray standing-wave experiments to triangulate 
atomic positions. It is shown and illustrated by 
experimental results that an accurate determination 
of the asymmetry factor is then necessary for correct 
analysis of the results. 

The aim of this paper is to point out the exact 
geometrical parameters that have to be taken into 
account in tilted geometries in order to correctly 
calculate the theoretical rocking curves and fluore- 
scence yields in XSW experiments and to underline 
the importance of the adjustment of the /3 angle. 
Rocking curves for a 11T reflection (~  = 70.52 °) of 
an Si(111) crystal have been measured as a function 
of/3. For the same reflection, XSW experiments with 
different/3 angles have been performed on an Si(111) 
crystal with three iron monolayers (MLs) deposited 
(1 ML = 0.78 x 1015 atoms cm-2). The results em- 
phasize the importance of very precise knowledge of 
this angle/3 for the reliability of the XSW results. 

1. Introduction 

Since its first development by Batterman (1964, 
1969), the X-ray standing-wave (XSW*) method has 
been used for the study of surfaces and interfaces. 
Much work on the determination of the positions of 
adsorbed atoms on the surface of semiconductors 
such as silicon (Bedzyk, Gibson & Golovchenko, 
1982; Vlieg, Fontes & Patel, 1991; Boulliard et al., 
1992), gallium arsenide (Saitoh, Hashizume & 
Tsutsui, 1988) and germanium (Bedzyk & Materlick, 
1985) has been reported. An XSW experiment allows 
one to determine the relative positions of adatoms 
(adsorbed atoms) with respect to the reflecting planes 
by simultaneously recording the rocking curve of the 
substrate for the selected reflection and the fluore- 
scence yield of the adatoms. Use of different reflec- 
tions allows determination of the positions by 
triangulation. The crystal surface generally has low 
h, k, l indices and a symmetric reflection on the (hkl) 
planes determines the positions of adatoms perpen- 
dicular to the surface. Then, reflections using two 
other reflecting planes inclined by angles ~ and qb2 
with respect to the surface are used to fully 
determine the positions of the atoms with respect to 
the crystal. This q0i angle (i = 1, 2), between the 
normal to the crystal surface n oriented inwards and 
the diffraction vector h, can be larger than the Bragg 
angle Os; then, usual asymmetric reflection where the 
incident wave vector k(f ), the diffraction vector h and 
the normal n are coplanar would lead to a Laue 
transmission geometry. In order to have Bragg 
reflection geometry, it is necessary to turn the crystal 
around the diffraction vector h (Fig. 1). The plane 
(h,n) and the diffraction plane (h,k(f)) then make an 
angle/3. Such reflections with/3 m 0 are hereinafter 
referred to as tilted reflections. /3 = 0 (and qb g 0) 
corresponds to the usual asymmetric Laue geometry. 

* The  case o f  X S W  at  no rma l  incidence is not  t aken  into 
account  here. 

2. Fundamental equations for an XSW experiment, 
rocking curve and fluorescence yield 

In the following paragraphs, Authier's (1986) 
notation for the X-ray dynamical theory is used; in 
this formulation, the vector n is oriented into the 
crystal. 

~ - h  

" - n  ~ [  Diffraction ' "ii, i l;--~: -~,'"" _lPlan e 
,~,.~.~.~(hkl) plane 

Crystal 

(a) 

L m n s  

(b) 

Fig. 1. Geometrical description of a tilted reflection: (a) general 
view; (b) figure in the diffraction plane (h,k~oa)). 
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2.1. Standing waves 

Bragg diffraction of a plane wave in a perfect thick 
crystal induces an electric field D equal to 

D(r,0) = Do(0) exp ( -  i2rrko" r) 

+ Dh(0) exp ( - i2zrkh" r), (1) 

where 0 is the angle of incidence with the diffracting 
planes, Do and Dh are the amplitudes of the incident 
and diffracted waves inside the crystal, ko and kh are 
their wave vectors and h is the reciprocal-lattice 
vector associated with the hkl reflection. These three 
vectors are linked together by kh = ko - h. 

The interference between the two waves creates a 
standing wave whose intensity is 

I D ( r , 0 ) l  ~ -  IDo(O)[2{1 + I (o)12 
+ 2C[~:(0)]cos[~(0)+ 27rh'r]}, (2) 

where C = 1 or cos 20 according to the direction of 
the electric vector either normal or parallel to the 
diffraction plane (h,k(fl)) and so(0) is the ratio of the 
complex amplitudes Dh(O) and Do(O) whose phase is 
g,(0): 

~(0) = Dh(O)/Do(O) = [IDh(0)l/]Do(0)]] exp [iO(0)]. 
(3) 

2.2. Rocking curve 

The measured reflecting power Ih is the ratio of the 
diffracted and the incident energies outside the crys- 
tal and is given by 

I~(O) - 13'I[ID2~)(0)IZ/ID(o~)I2], (4) 

where D (a) and D~, ~) are the incident and diffracted 
waves outside the crystal and [3'[ is the ratio of the 
cross sections of the corresponding beams. 

Boundary conditions simply link D(fl ) and D~, a) to 
Do and Dh waves inside the crystal by D(fl ) = Do, D~, ~ 
= Dh and 

I h ( O )  = 13' l [ IDh(0)12/IDo(0) l  2] = 13'11~(0)1 =, (5 )  

The ratio 13/I of the cross sections Lh and Lo (Fig. 
l b) of the diffracted and incident beams plays the 
role of the usual asymmetry factor: 

y =  3'h/3'o = cos ~ / c o s  ~Fo, (6) 

where ~o = (n',k(fl)) and qth = (n',k~,a)), n' being the 
projection of n on the (h,k(fl)) plane (Fig. lb). Let us 
call the angle a,  a = (n',h), the asymmetry angle. 
Then, ~o = 7r/2 + Os + a, ~h = zr/2 -- (Os -- a) and 
3' = - sin (Os - a)/sin (0B + a). 

2.3. Fluorescence yieM 

Let us call p(r) the atomic distribution of the 
adatoms whose fluorescence yield Y(O) is recorded. 
Under the dipolar approximation (Zegenhagen, 

1993), Y(O) depends on the intensity of the electric 
field ]D(r,0)l 2 and the atomic distribution p(r) 
through the relation 

Y(O) ~ f p(r)lD(r,O)l 2 d3r/ f p(r)d3r, 

which becomes, from (2), 

Y(0) oc 1 + 1((0)12 + 2Cl~(0)l 

x {fp(r) cos [~b(0) + 27rh" r]d3r/fp(r)d3r}. (7) 

This expression leads to the definition of the 
coherent fraction Fh and the coherent position Ph of 
the p(r) distribution for the hkl reflection as the 
Fourier component of p(r) with respect to the dif- 
fraction vector h, 

Fh exp (iZTrPh)= f p(r) exp (iZTrh " r)d3r/ f  p(r)d3r. (8) 

Then, the fluorescence yield can be expressed as a 
function of Fh and Ph by 

Y(O) ~ 1 + I (0)1 = + 2cl~(O)lF,,cos[,/,(o) + 2~rPh]. 
(9) 

The interpretation of an XSW experiment relies on 
the precise determination of Fh and Ph, which are 
obtained by a numerical two-step fit: (i) simulation 
of the experimental rocking curve to determine the 
experimental resolution function that convolutes the 
theoretical profiles; and (ii) simulation of the experi- 
mental fluorescence, using the resolution function 
determined in (i), to obtain the two parameters Fh 
and Ph. 

3. Calculation of ~(0) 

The propagation equation in the crystal gives for 
~(0) 

( = Dh/Do = 2Xo/kCx-~ = kCXh/2Xh, (10) 

where Xh and X~ are the hth and hth Fourier com- 
ponents of the dielectric susceptibility and k = Ik~o°)l 
--Ik~,°) I. The quantities Xo and Xh are defined by 

Xo = [k~o - F(1 + Xo)]/2k 
(11) 

xh = [k~, - k~(1 + Xo)]/2k. 

Xo and Xh are related by the well known equation 

X o X  h = k z C 2 X h X - g / 4  , (12) 

The value of ~(0) is determined from the continuity 
condition of the tangential components of the wave 
vectors. 

The usual construction in reciprocal space intro- 
duces the intersection La of the two spheres of radii 
k = 1/~ centred at the reciprocal-lattice points O and 
H with the (h,k(fl)) plane (Fig. 2) and the common 
extremity of the wave vectors ko and kh called the 
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tie-point P: 

ko = O P  and k h = HP.  (13) 

Outside the crystal, k~fl ) = O M  is the incident wave 
vector. Thanks  to (13), one gets k{fl ) - k o  = MP.  
Owing to the boundary  conditions at the crystal 
surface, M P  and n are collinear. For  a tilted reflec- 
tion, h, k{fl ) and n are not coplanar  and ko is no 
longer in the (h,k{fl)) plane, in contrast  with the usual 
case of  unf i red  reflections. 

One can now obtain a second relation between Xo 
and Xh [(11)] by raising to the second power the 
equations 

ko = O P  = OLa + LaM + M P  
(14) 

kh = H P  = HL~ + L,,M + MP.  

With only first-order terms kept:* 

k 2 = k 2 + 2OLd" MP,  
(15) 

= k 2 + 2HL~. L~M + 2HLa" MP.  

The product  HL~ "L~M is expressed by setting L~M 
= kAO, where A0 is the depar ture  from the Bragg 
angle. For  tilted reflections, M P  is not in the plane of  
diffraction. It is easy to check that  OLd.  M P  = 
yoyq , , kMP and HLa" M P  = y h y ~ , k M P ,  where y¢,, = 
cos (n,n') (Fig. 1). Equat ion (15) can be rewritten as 

k2o = k 2 + 2kMPyoy~, ,  (16) 

k ~  = k 2 - 2k2AO sin 20 + 2 k M P y h y , , ,  

* This development is valid for • angles smaller than 89.5 °. 

, , Th 
i I \ \  

1 \ 
/1 \ 

I I \ \  
11 \\ 

w 

H 0 

Fig. 2. Schematic drawing in the (h,k~fl)) plane; OM = kCfl ). The 
normal n to the entrance surface issued from M cuts the 
dispersion surface generated by a rotation of the hyperbola 
around OH at a point P that is not located in the plane of the 
figure. 

which gives for Xo and Xh 

Xo = yoyv,  M P  - k x o / 2  
(17) 

Xh = Th'yqyMP - kdO sin 20 - kXo/2.  

Elimination of  M P  in these two equations gives 

(XolYoY~ ) -- (Xh/YhY~ ) 

= (kAO sin 20/yhy~,)  + (kXo/2yhy~ ' )  

- (kXo/2yoy,U).  (18) 

In this expression, y~,, can be eliminated and then 
(18) is equivalent to equation (4.5) of  Authier  (1986), 
under the condit ion that  the angle of  asymmetry  is 
no longer the (n,h) angle as in the case of  an unf i red  
reflection but is now the (n',h) angle. Symmetric  
reflections will occur for Yo = [Yh], that  is to say, 
when n' and h are collinear, which means /3 = rr/2 
(Fig. 1). The (h,k~o a)) and (h,n) planes are then perpen- 
dicular. 

4. Rocking curves of tilted reflections; theory and 
experiment 

It can be shown that  the reflecting power lh is a 
function of  the dimensionless parameter  r/, which 
is related to the departure  from Bragg angle A O = 
0 - 08 by 

~7 = (/tO - AOo) sin (20B)/IClOchx~)l'2lyl'a, (19) 

where AOo = - g o ( 1 -  y)/2 sin (208) is the deviation 
of the real Bragg angle from 0 ,  owing to the refrac- 
tion. In the case of nonabsorbing crystals, rl is a real 
number  propor t ional  to ( a o - a O o ) / I r l  ''= which 
shows that  asymmetry  contracts  or expands the 0 
axis without  modifying the shape of  the rocking 
curve. This conclusion remains valid to a good extent 
for real absorbing crystal. 

Experimentally,  the measurement  of  the full width 
at hal f -maximum ( F W H M )  of the rocking curve 
allows one to follow the variat ion of  the asymmetry  
of  the reflection; the F W H M  can be assimilated to 
the width wa of  the total reflection domain:  

~oa = 21cl(xhXr,)l/2lrll/2/sin (20~) = [yll/2~os, (20) 

where O~s is the F W H M  for a symmetric case. 
For  a given position of  the plane (k{fl),h), the value 

of  the asymmetry  y is governed by the rotat ion of  n 
around h, i.e. the variat ion of  the angle/3.  The angle 
a is related to /3  by the relation 

tan a = cos/3 tan (/), (21) 

which is illustrated in Fig. 3(a). The ratio of  Darwin 
width for asymmetric  (to~) and symmetric  (Ws) reflec- 
tions becomes 

oo,,/to, = [1 - cos/3(tan q~/tan 08)] ~/2 

x [1 + cos fl(tan 4~/tan OB)] -'~z. (22) 



TACCOEN, M A L G R A N G E ,  ZHENG,  BOULLIARD A N D  CAPELLE 501 

Let us consider the case of interest here, i.e. 
> Os. For a values larger than Os, the geometry 

corresponds to a transmission case. One can define 
two opposed critical angles fl = -+tic [ t ic= 
arccos (tan 0s/tan qo)] for which a = _+ Os. Grazing 
incidence is obtained for a = 0s and, for a = - 0 s ,  
the direction of the diffracting beam is nearly parallel 
to the crystal surface. Fig. 3(b) shows that the varia- 
tion of the width tOa of the rocking curve as a 
function of fl depends strongly on the value of the 
parameter R = tan qO/tan Os. For R < 1, oJa varies 
smoothly with fl whereas, for R > l, it varies very 
rapidly. 

The above predictions have been experimentally 
checked. The sample was a (l 1 l) silicon crystal with 

offdegree) 
(asymmetry angle) 

100 

50 

-50 

-100 

three iron monolayers deposited on the surface. The 
111 reflection making an angle qb= 70.52 ° to the 
(111) surface was used with a wavelength of 1.51 A 
(0 ,  = 13.96°). A monolithic grooved four-reflection 
( + , - )  monochromator for which the third reflection 
is asymmetric delivers a quasi-plane wave (Boulliard 
et al., 1992). For a wavelength of 1.51 A, the intrinsic 
FWHM of the rocking curve for a symmetric 111 
reflection is 7.25". Taking into account the angular 
profile of the beam from the monochromator, one 
can predict ~Os = 7.47". Because of the high value of 
R ( R =  11.41), in order to remain in a Bragg 
geometry, this situation induces a small range of 
variation for fl (85 _< fl _< 95°). 

Two extreme cases of the measured rocking curves 

03~/O)s 

are drawn in Fig. 4 showing FWHMs of 3.20 (5)" 
and 49.9 (4)". Fig. 5 gives the experimental FWHMs 
as a function of fl, the angle of rotation of n around 
h. Since the position where h, k~o a) and n are coplanar 
is not known accurately, the exact origin of the fl 
rotation has to be determined by a fit (line in Fig. 5) 
of the experimental curve with the theoretical one. 

Reflectivity 

= 30 ° 

= 50 ° 0.8 

70.5 ° 
0.6 

89 ° 

' 9'0 1; '8 45 5 1 0 0.4 

1̂5 (degree) 0.2 
(a) 

o | i 

R = 11.41 -30 -15 0 15 30 

4 

3 

2 ~ = .5 

1 

0 

0 30 60 90 120 150 180 
(degree) 

(b) 

Fig. 3. (a) Theoretical asymmetry  of  an inclined reflection. Each 
curve corresponds to a specified angle qo. The dashed line is the 
case o f  a l i t  reflection on an S i ( l l l )  sample. (b) Theoretical 
ratio o f  the F W H M s  of  a tilted reflection and of  a symmetric 
reflection as a function of  the angle fl for several values of  the 
ratio R = tan ~ / tan  8s ( 4  is the angle between the reflecting 
planes and the surface). The dashed line is the experimental 
case. 

A0 - A0 ° (arcsec) 

Fig. 4. Two extreme experimental I1T rocking curves obtained 
with an S i ( l l l )  crystal. 

35 FWHM (arcsec) 

30 

25 

20 

15 

10 

5 

0 • • i 

84 86 88 90 92 94 96 
13 (degree) 

Fig. 5. Fit (full line) of  the experimental measurements (circles) of  
F W H M s  of  rocking curves for a l iT  reflection and an S i ( l l l )  
crystal as a function of  fl, angle of  rotat ion of  n around h. 
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For all /3 values larger than 86 ° , the agreement 
between measurements and theory is quite good. The 
small F W H M  (0.76") of the beam delivered by the 
monochromator  has not been taken into account to 
calculate the curve. This explains the small difference 
between the experimental and theoretical values for 
/3 < 86 °. This experiment shows that it is possible to 
obtain controlled asymmetric reflections by using 
tilted reflections. 

5. Tilted reflections for an XSW experiment 

As shown in § 4, for large values of R = tan q0/tan 0~, 
a small variation of/3 induces large modifications of 
the shape of the rocking curve. How is the fluore- 
scence yield then modified? 

Combining (5) and (9), one gets for the fluore- 
scence yield 

Y(n) = 1 + Ih(n)/l~l + 2C[IhOT)/l~'l]l/2Fh 

× COS [6(r/) + 27reh]. (23) 

As shown previously, the effect of asymmetry is to 
contract or expand the rocking curve along the 0 
axis. The same holds for 6(0). In contrast, (23) 
shows that asymmetry modifies the fluorescence in a 
more complicated way and the following results 
show the importance of taking it into account cor- 
rectly. 

Three experiments have been performed on the 
sample described in § 4 using the same 11T reflection 
for three slightly different values of/3,/30,/30 + 0.6 ° 
and/30 - 0.5 °, with/3o near 90 °, which is the symme- 
tric case value. The results are shown in Fig. 6. The 
rocking curves are very similar and, if each experi- 
ment had been performed separately, each of them 
would have probably been considered as a symmetric 

Intensity 
2.5 

2 Fluorescence 

11 
~ff, X ~  J Rocking 

0 | | t 

-14 -10 -6 -2 2 6 10 
A 0 - A 0  ° (arcsec) 

Fig. 6. (1 IT) rocking curves and fluorescence Fe Ka yields for an 
Si(11 l) crystal with three iron monolayers  deposi ted and three 
different values of  the asymmetry  angle a.  Squares: a = + 1.75 °. 
Circles: a = +0 .12  °. Triangles: a = - 1.34 °. 

Table 1. Modulus and phase of the XSW structure 
factor for the three experiments made on a (111) 
silicon sample with three monolayers of iron using the 

111 reflection 

The third and fourth columns are the coherent  function Fh and the 
coherent posit ion Ph when the asymmetry  is taken into account;  
the last two columns are their values obtained assuming a symme- 
tric case. 

Fitted 
asymmetry 

/3 (o) (a)  (°) (Fh),, (Ph),~ (Fh),,=o* (Ph)~=0* 

Experiment 1 /3o+0.6 +1.75 0.22 (1) 0.16 (1) 0.34 (1) 0.19 (1) 
Experiment 2 flo +0.12 0.22 (1) 0.16 (1) 0.22 (1) 0.16 (1) 
Experiment3 flo-0.5 -1.34 0.22(1) 0.16(I) 0.18(1) 0.11(1) 

case. In contrast, fluorescence Fe Ka curves are quite 
different and would have led, for a symmetric geom- 
etry, to different values of Fh and Ph (Table 1). These 
three experimental results have been fitted using 
asymmetry as a parameter. Results are presented in 
Table 1 and show that the values of Fh and Ph thus 
determined are now the same. If the asymmetry is 
not taken into account, results for Ph could vary 
from 0.11 to 0.19, leading to large errors in the 
atomic positions. The interplanar (11]-) distance 
being 3.13 A, the atomic position thus determined 
would have varied from 0.34 to 0.59 A. This example 
shows the crucial importance of a precise fit of the 
rocking curve taking into account the exact geometry 
of the diffraction. 

6. Concluding remarks 

X-ray dynamical theory has been applied to the cases 
where reflecting planes are inclined with respect to 
the surface and tilted geometries (i.e. when the 
normal to the crystal surface, the incident wave 
vector and the diffraction vector are not coplanar) 
are used. 

Tilted geometries are often necessary to fully 
determine by the XSW technique the position of 
adatoms with respect to the crystal lattice, and it has 
been shown that the exact value of the asymmetry, 
which can vary very rapidly with small changes of 
the orientation of the crystal for very inclined dif- 
fracting planes, must be determined carefully to 
obtain reliable results. This is especially important 
for very inclined diffracting planes; nevertheless, our 
results show that, whatever the geometry is, an error 
of the order of 1 ° in the asymmetry angle a can 
induce noticeable errors in the atomic position. 

Most generally, tilted geometries offer the possibil- 
ity of obtaining Bragg geometry for any reflecting 
plane in the crystal with any value of the asymmetry 
(including the symmetric case), which is very interest- 
ing for several X-ray optics applications. For 
instance: (i) there is the possibility of varying freely 
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the asymmetry and then the width of the rocking 
curve by a simple rotation of the sample; (ii) the use 
of very inclined reflecting planes in a tilted and 
symmetric geometry enables a decrease in the ther- 
mal load on monochromators, since the trace of the 
incident beam on the surface of the crystal is then 
much larger than in the case of symmetric reflections 
on the surface (Macrander et al., 1992). 

The experiments were performed on beam line 
D15B of the DCI storage ring at LURE, Orsay, 
France. We thank very much Professor J. Derrien of 
the CRMC2, Marseille, France, for the preparation 
of the sample. This work was financially supported 
by the French Ministry of Research and the EEC 
(Esprit BRA no. 3026). 
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Abstract 

Traditional direct methods based on the tangent 
formula and/or on Sayre's equation cannot solve ab 
initio the large majority of protein crystal structures 
[Giacovazzo, Guagliardi, Ravelli & Siliqi (1994). Z. 
Kristallogr. 209, 136-142]. Indeed, the amount of 
information available leads to a signal-to-noise ratio 
close to unity; consequently, the correct solution, 
even if attained, cannot be recognized among the 
trial solutions. Attention is here focused onto the 
case in which diffraction data of one isomorphous 
derivative are additionally available. It is shown that 
in such a case direct ab initio solution of protein 
structures is feasible. Tests based on calculated dif- 
fraction data suggest the procedure to follow for a 
possible success. 
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Fp = Fp[ exp (i~o) 
Fa = F,~ exp (i~b) 

F,,= Y~-Yp 

Notation 

i Structure factor of the protein 
Structure factor of the isomor- 
phous derivative 
Structure factor of the heavy- 
atom structure (added to the 
native protein) 

@= ~0h- ~Ok- ~Oh--k 
Ep = R exp (i~o) Normalized structure factor for 

the protein 
Ea=Sexp(id/)  Normalized structure factor for 

the isomorphous derivative 
N Number of non-H atoms in the 

N primitive cell 
0-; = Y. Z~ (Zj is the atomic number of the jth 

j---- I atom) 
Neq = 0"32/0"2 Statistically equivalent number of 

atoms in the primitive unit cell 
[0"310"2]p Value of Neq for the native 

protein 
[0"32/0"2]~ Value of Neq relative to the heavy- 

atom structure 
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